
APPLICATION OF CONSENSUS PROBLEM
WITH BYZANTINE NODES

TO MONITORING PROBLEM

Università degli Studi dell’Aquila

Source:
•“Applying Byzantine Agreement Protocol to the Intrusion Detection Problem in
distributed systems” by Fernando C. Colon Osorio – Xiaoning Wang

•“Dominanza su griglie con tolleranza a nodi bizantini” – Degree thesis by
F. Cellinese

Students:
Dell’Elce Luana
Cicchini Stefania

MONITORING PROBLEM

A major activity in Distributed Systems consists of monitoring whether all the
system components work properly. This problem is very important for real-life
applications whose components’ communication scheme make use of an
Distributed System which can be modelled by means Message Passing System.

At this purpose we introduce Network Monitoring Systems (NMS), which can
monitor any network for problems caused by node and links malfunctioning.
A NMS has two functions:
1.monitoring the network;
2.reporting a malfunctioning to the system administrator.

In particular, in a NMS, the status of nodes and edges is monitored through the
use of sentinel nodes, which periodically exchange messages with adjacent
nodes and then report some kind of information to the network administrator.

In the case in which a sentinel node communicate only with its adjacent nodes
the monitoring problem is reduced to dominance problem in graphs, with the
activity of selecting a set D of nodes (dominators) in a graph in order to have
all the nodes of the graph within distance at most 1 from at least a dominator.

|D|=4
x

y z

x dominates
{x,y,z}

We are going to study the possibility to calculate the Minimum Dominating
Set tolerant to byzantine nodes, named Liar’s Dominating Set, in graph
with grid topology.

What are Byzantine nodes?

In a graph G=(V,E), a byzantine node is a sentinel which is
not able to identify correctly intrusions or report to the
system administrator a wrong position.

Let’s give some notions:

Grid Graph: A graph G= (V, E) of m x n dimension has grid topology if for
each pair of adjacent nodes (vij, vi’j’) following definitions hold:
i = i’ and |j-j’| = 1
j = j’ and |i-i’| = 1.

Order of a node: In a grid m x n with vertices vi,j , 1 ≤ i ≤ m and 1 ≤ j ≤ n, node
vi,j has order less than node vk,p either if i < k or if i = k and j < p.

Graph’s grade: Given a graph G, the minimum grade of G, �(G), is the
vertex’s grade with the minimum number of incident edges.

Neighbourhood of a node: Given a node x, N[x] is the set of adjacent nodes
to x, including x.

Dominating Set: Given a graph G = (V, E), a dominating set K is a set K c V
such that, for each v ϵ V, it is adjacent at least to one node in K.

Doubly Dominating set: Given a graph G = (V, E), a doubly dominating set is
a set K c V such that, for each v ϵ V, it is adjacent to at least to two nodes in
K.

LDS (Liar’s Dominating Set): Given a graph G = (V, E), LDS is a
set K c V such that, K is a doubly dominating set with respect
G, and for each pair of nodes (x, y) of V, the following
inequality holds:

|(N[x] U N[y]) ∩ K| ≥ 3

Thanks to this set, it is possible locate intruder and byzantine nodes.

Minimum LDS: A minimum LDS is an LDS with minimum cardinality γLR(G).

THE ALGORITHM
[by student: F. Cellinese]

The proposed algorithm will search doubly dominating sets rather than
minimum LDS, checking then if they are LDS too.

The current algorithm is able to find a LDS on grid graphs even in presence
of one byzantine node. Knowing that the algorithm constructs all possible
doubly dominating sets, in an increasing way with respect to cardinality, so
the first set that satisfies the LDS definition it is the minimum too.

This is a branch and bound algorithm, that executes a BFS operation
(Breadth-First Search - BFS) over the Branch Decision Tree (BDT). This
ensure that every time an ID is examined, it will have a non-less number of
dominating nodes than previous examined ID. Each node of the Branch
Decision Tree (BDT) is the current state solution of the following problem:

“Try to dominate the smallest node non-doubly dominated”.

At each step the algorithm examines an ID of the Branch Decision Tree.

An ID is a set of nodes capable to keep different information about each
node:
•If a node is dominated;
•If a node is doubly dominated;
•If a node is dominating.

The algorithm terminates when it arrives to an ID in which dominating nodes
match to the LDS definition.

The data structures chosen to implement the algorithm are a queues, a
Binary Search Tree (BST) and a generic set of nodes which represents the ID
of BDT.

In order to make possible the horizontal slide of IDs, the creating sets are
always insert in queues and extract one by one, until one reaches to a
solution.

However, using only a queue, the probability that from an ID, ones reach to
an already created ID it’s high, with corresponding redundancy. So to avoid
this problem, one needs to put besides to queue a Binary Search Tree.

Moreover the use of BST makes the algorithm faster, reducing the cost of
the ID searching: O(log n) instead of O(n), where n is the number of IDs
already computed.

PSEUDOCODE
(non-anonymous system)

Input: A graph G = (V, E) with grid topology;
A queue of sets, initially with an inner empty set;
A Binary Search Tree T, initially empty.

Procedure:

(1) One extracts the first set K from queue, in which one searches
the non-doubly dominated node of minimum order.
If such node is not present go to step 2 otherwise go to step 3.

(2) If K it’s doubly dominating then is a potential candidate being an LDS.
One examines each possible pair of nodes (x, y) such that holds
the following:

|(N[x] U N[y]) ∩ K| ≥ 3.
In that case, the algorithm terminates and returns solution k.
Otherwise come back to step 1.

Output: The minimum LDS on G.

(3) Once the first non-doubly dominated node v is identified, one needs
dominate it through itself and all its adjacent nodes. For each of those
nodes:
• If node Y is already dominating, it is deleted from K and one examines

the next one;
• One creates a new set U = K;
• Y become dominating in U;
• If U does not belong to T, one inserts U into queue and in the BST,

otherwise U is deleted.

(4) One eliminates K from T and one executes again step 1.

APPLICATION OF BYZANTINE AGREEMENT PROTOCOLS
TO THE INTRUSION DETECTION PROBLEM

- Necessary and Sufficient conditions for application of
Byzantine Agreement Protocol to the Intrusion Detection Problem.

- Designing an Intrusion Detection & Countermeasure System, SAFE
developed at the

Worcester Polytechnic Institute System Security Research Laboratory
(WSSRL)

The key to such a system is a distributed module:

The distributed Trust Manager or TTM.
The TTM serves three major system functions:
• Using a Trust Relationship Matrix, one can know which logical nodes in the
system can be trusted;
• Using Byzantine Agreement Protocol, one can identify and isolate nodes
that have been compromised;
• Preventing the trust system from being partition (Quorum formation).

In SAFE, the Primary Security Mechanism used is the creation, updating,
and maintenance of a Trust Relationship Matrix.
This matrix, which is managed by the Trust Manager,
contains update informations on the Trust Relationship
between all the nodes in the system.

Definition:
Given a Network Monitoring System G=(V,E)
and nodes i and j of V,

each element Tij(t) of Trust Relationship Matrix represents
the level of trust that node i has with respect to node j at time t.
Tij(t) = 0 denotes the lack of trust between i and j, at time t.
Tij(t) is called Trust Function.

Trust Relationship Matrix is not necessarily symmetric,
because the processors i and j may have a
different level of trust with each other.

Let’s see an example:

Node a is the source of the intruder attack.
Node h is the target of the intruder attack.
Since there is not a direct trust relationship between node a and node h,
the intruder is forced to a set of attempted intrusions into nodes e and f,
before attempting to compromise h.
Due to the topology of the Trust Relationships between nodes,
compromising any node other than nodes e or f will not allow the
intruder to compromise the target node h.

Such a topological constraint among nodes,
brings Significant Advantages over other approaches.

Once, the Intrusion Detection Problem is formulated,
then, well known solutions to the Byzantine Generals Problem
are readily available.
This kind of solution can be used in the design of the Trust
Manager

At this purpose, we present the Byzantine Agreement
Protocol (BAP), which aims to establish a fault-tolerant
agreement when one or more nodes in a system have been
compromised or failed.

THE BYZANTINE GENERALS PROBLEM

The Byzantine Generals Problem:
There are several divisions of a Byzantine army
camped outside an enemy city, each division
commanded by its own general.
The generals can communicate with other ones
only by messenger.
They must decide upon a common plan of
action. Some of the generals may be traitors,
trying to prevent the loyal generals from
reaching agreement.

The generals must have an algorithm to guarantee that:

• All loyal generals decide upon the same plan of action. The traitors may do
anything they wish.

The algorithm must guarantee such a condition, regardless of what the traitors do.

• A small number of traitors cannot cause the loyal generals to adopt a bad plan.

THE BYZANTINE AGREEMENT PROTOCOL (BAP)
The Byzantine Agreement Protocol algorithm is a distributed algorithm
designed to achieve consensus.
Several processes achieve consensus if they all agree on some allowed value
called the outcome;
The interface to consensus has two actions:
- allow a value,
- read the outcome.
A consensus algorithm terminates when all non-faulty (uncompromised)
processes know the outcome.
Let’s substitute generals for nodes in distributed systems, and consensus for
the need to agree on which nodes are safe/sane, so the problem of identifying
a compromised node can be easily described as follow:

In SAFE there are several nodes, which cooperate with each other to detect
intrusions.

Each node runs an autonomous agent, the TTM, which continuously sends messages
to other nodes.
The message that is sends has two possible values:

- “keep sane” or “0”;
- “I am potentially compromised” or “1”.*

In this context, the nodes that can be trusted should be able to determine
which nodes are compromised and arrive to a consensus.
A small number of nodes that have been compromised, should not be able
cause the other nodes to adopt a wrong or even malevolent message.

The Byzantine Agreement Protocol (BAP), by which we can detect intrusion
and minimize the success of attacks, fits this context perfectly.

Threshold:
There is a threshold t:
If more than t nodes are compromised, the BAP will also fail.
The resiliency of the algorithms to the number of nodes
compromised depends on the communication mechanism used to
exchange messages, and its characterization by the value of t.

In order to improve the intrusion-resiliency of SAFE, as well as to make the
implementation of the Byzantine Agreement protocol simpler in our system,
we will assume the presence of a communication channel, which is both
reliable and secure.

In the communication mechanism used by SAFE, messages are signed, so it's
always possible determine the sender of a message.
The BAP for signed messages is the Signed Message Algorithm (SM), which can
achieve consensus if at most n - 2 nodes have been compromised, among a
total of n nodes, in the following way:

Signed Message Algorithm (SM)

(1) The commander signs and sends its message to every node Ni it can
reach directly;

(2) Each node Ni:
(a) Maintains a running list of all the messages it has

received;
(b) Then, it signs (authenticates) all the messages that node

it has received, and then sends a copy with its signature to all
other nodes that:

(i) Are directly connected (one hop away) to node Ni;
(ii) Whose messages he has not received yet;

(c) The node will repeat step (b) until node Ni does not received any
additional signed messages;

(3) Ni then will arrive at a decision on the course of action, based on all the
signed messages.

It is also well noting that a compromised node will not necessarily follow the
above Signed Message Algorithm. For that matter, a set of compromised nodes
may collude with each other in an attempt to mislead or compromise all other
sane nodes.

Collusion may take any of the following forms:

• Falsify signatures, i.e., use each other signatures as part of the
authentication process;
• Forge messages;
• Send incorrect values or not send any values at all.
At least (n-2) trusted nodes could exchange messages to arrive at consensus,
the Byzantine Agreement Protocol (BAP) holds.

This is true if and only if we can guarantee the following:
(A1) Every message that is sent is delivered correctly.

(A2) The receiver of a message knows who sent it.

(A3) (a) A sane node’s signature cannot be forged, and any alteration
of the contents of his signed messages can be detected.

(A3) (b) Anyone can verify the authenticity of a general’s signature.

(A4) The absence of a message can be detected.

THE END
Thanks for attention!

